Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau.
نویسندگان
چکیده
Fyn kinase plays an important role during myelination and has been shown to promote morphological differentiation of cultured oligodendrocytes. We analyzed the downstream targets of Fyn kinase in oligodendrocytes. Because process outgrowth and wrapping of axons involve cytoskeletal rearrangement, we focused on cytoskeletal proteins linked to Fyn. Here we demonstrate that Fyn binds to the cytoskeletal proteins Tau and alpha-Tubulin in oligodendrocytes. Tau interacts with the Fyn SH3 domain whereas alpha-Tubulin binds to the Fyn SH2 and SH3 domains. To study the function of the Fyn-Tau interaction in oligodendrocytes, we designed a Tau deletion mutant that would compete with endogenous Tau-Fyn binding in transfected cells. The mutant Tau protein binds to the Fyn SH3 domain but lacks the microtubuli interaction domain and thus cannot bind to microtubuli. In the presence of the mutant Tau protein, a reduction of the process number and process length in oligodendroglial cells was observed. This effect is likely to be caused by interference with the Fyn-Tau-microtubuli cascade rather than inactivation of the kinase, because Fyn bound to the mutant Tau retains activity. A similar inhibition of process outgrowth was observed when oliogodendroglial cells were cultured in the presence of Fumonisin B1, an inhibitor of sphingolipid synthesis that prevents the formation of rafts. Because ligation of the cell adhesion molecule F3 on oligodendrocytes leads to activation of Fyn kinase localized in rafts, these findings suggest that recruitment of Tau and Tubulin to activated Fyn kinase in rafts is an important step in the initiation of myelination.
منابع مشابه
Oligodendroglial p130Cas Is a Target of Fyn Kinase Involved in Process Formation, Cell Migration and Survival
Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cyto...
متن کاملTau interacts with src-family non-receptor tyrosine kinases.
Tau and other microtubule-associated proteins promote the assembly and stabilization of neuronal microtubules. While each microtubule-associated protein has distinct properties, their in vivo roles remain largely unknown. Tau is important in neurite outgrowth and axonal development. Recently, we showed that the amino-terminal region of tau, which is not involved in microtubule interactions, is ...
متن کاملSignaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes.
Differentiation of oligodendrocyte progenitor cells requires activation of the Src family kinase Fyn. The signals that are upstream and downstream of Fyn in oligodendrocytes remain essentially unknown. Here we show that extracellular matrix engagement regulates the morphology of oligodendrocytes and activates Fyn. Infection of primary oligodendrocyte cultures with recombinant adenovirus reveale...
متن کاملDisease-related modifications in tau affect the interaction between Fyn and Tau.
Microtubule-associated protein tau is the major component of the neurofibrillary tangles of Alzheimer disease (AD) and is genetically linked to frontotemporal dementias (FTDP-17). We have recently shown that tau interacts with the SH3 domain of Fyn, an Src family non-receptor tyrosine kinase, and is tyrosine-phosphorylated by Fyn on Tyr-18. Also, tyrosine-phosphorylated tau is present in the ne...
متن کاملDynamic association of tau with neuronal membranes is regulated by phosphorylation.
Tau is an abundant cytosolic protein which regulates cytoskeletal stability by associating with microtubules in a phosphorylation-dependent manner. We have found a significant proportion of tau is located in the membrane fraction of rat cortical neurons and is dephosphorylated, at least at Tau-1 (Ser199/Ser202), AT8 (Ser199/Ser202/Thr205) and PHF-1 (Ser396/Ser404) epitopes. Inhibition of tau ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2002